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3"‘- ) ABSTRACT

s , The purpose of this thesis is to research the
: availability of targets moving on or near the earth’s
o] surface when viewed by an orbiting satellite. A discuasion
ﬁ@# of basic orbital mechanics ia presented as well as a

. development of a suitable coordinate syatem. An analysis of
NG non-linear observability is then provided. Lastly an

b observer is designed and sucessfﬁlly simulated.
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A I. INTRODUCTION

o

N

>

;_, This thesis deals with satellite tracking of relatively

;: low altitude targets. The long term goal of this project is

-

'ﬁ to determine an effective general-coverage satellite orbital
pattern. The short term goal of this thesis is to explore

o

‘hl

A the possible use of various coordinate systems and to design

R,

13 a satellite observer. A target such as a slow moving

aircraft is assumed for the basic development.

R y
oA |

Chapter 2 contains an overview of basic satellite

Y mechanics and dynamics as well as a brief discussion of

L0
Ap Ay Te s

satellite detection and tracking equipment. Equations

.
P o

vl"

regarding orbital motion will also be introduced. Also

.
. .
s KA

chapter 2 provides an overview of the entire thesis.

o
-

-,

The theory and mathematics of satellite and target

- .

S

motion for a specific case are developed in Chapter 3. The

Sy

Tt i
Ll

g

geometry of motion on a spherical surface is detailed in

5]

%; that chapter. Specifics such as geometric swath width,

‘EE line-of-sight and precession are furnished. This leads into
;E an in-deapth examination of coordinate systems. Various

,g * attempts to find a suitable set of reference axes for

i; analytic studies of the tracking problem are presented. It
o,

f: is desired to achieve a target and observation model that

4

has a convenient basis for analysis such as either linear or
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bilinear in state space. Several trial coordinate systems
waere developed mathematically but found unsuitable. One
trial system is considered satisfactory under certain
assumptions and is, therefore, completely developed.

Chapter 4 presents a discourse on observability in
general, and non-linear observability in particular. The
concept of connectedness and univalence is discussed. The
chosen system is then analyzed for observability.

The topic of observers is presented in Chapter 5. A
background on basic obsevers is provided. Finally an
observer is designed and simulated by computer for the
praféred system.

Chapter 6 offers conclusions and recommendations for

further studies.
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o II. THE SATELLITE IN ORBIT
-
SO
‘“, ) Before an understanding of satellite tracking can be

i

X achieved it is essential to have an understanding of basic
Y
'*; satellite dynamics and satellite sensors. The concepts and
‘dag

Sl

e equations that govern the motion of a satellite in orbit

o around the earth are based on the physical laws put forth by
T

ﬁj kepler and Newton. These laws of motion apply to artificial
wiﬁ satellites as well as planets and moons. The physical

T geometries and forces are the same. The following

‘{j explanations and derivations form a basis for orbital motion
S8

o of a satellite.

K A. THE SHAPE OF THE EARTH

o

?} In reality the earth is neither exactly round nor

b exactly a rigid body. The constituents can be molded and

?{ deformed to a certain degree. The earth’s rotation causes
\.-
;ﬁ- it’s own materials to feel a force that pulls tangentially
i:j into space. Fortunately the earth’s materials also undergo
& .

- a constant centripetal (center seeking) acceleration to keep
-r.

:H them in place. This centripetal acceleration, which is

-'r-q

:;: directed towards the center of curvature, is provided by

e :

w v earth’s gravity.
uQZ The gravitational force produced by the earth is
-
.xj directed towards the center of the earth. However, the
& momentum produced by the earth’s rotation pulls at the j
i ‘




o - ..

P t"t"x‘ l) s

‘;‘, o "l“ :" -"
PN

']
*

v am

C

l‘. ., *
a.".
‘--l
l'.
-
MEAP
.
LS "
'_‘l 4
-
e
L]

N

ANEh
LN

hY
L

o)
B

earth’s materials. Each particle of earth has both these
forces acting on it. The earth’s surface at the equator 1is
actually moving faster around the rotation axis than the
surface material at or nearer the poles. Figure 2.1
illustrates this. Therefore the materials on the surface at
the equator feel this tangential pull the most. Analysis
shows that the result is an earth shaped like an oblate
ellipsoid.

An oblate ellipsoid can be described as a sphere which
has been compressed along the polar axis and therefore
bulges at the equator. A cross sectional slice through the
poles yields an ellipse. A slice along the equatorial plane
yields a circle.

This oblateness (measure of the earth’s flattening) of
the earth is only slight. The equatorial diameter is
calculated to be 12,757 km whereas the polar diameter 1s
calculated to be 12,714 km. This is only a 43 km difference
which is about 1 part in 297.

B. GREAT AND SMALL CIRCLES

The earth’s equatorial bulge can be temporarily
disregarded in order to consider the earth as a sphere
turning beneath an orbiting satellite. The intersection of
a plane passed through the center of the asphere and the
sphere is the largest circle that can be drawn on the
sphere’s surface. This is known as a great circle. The

shortest distance between any two points on the surface of

10
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o the earth is an arc of a great circle. The earth’s equator
“ is an example of a great circle. There are an infinite
#‘b_ -
‘e number of approximate great circles on the earth’s surface
o
;ﬁj since there are an infinite number of planes that can be
};1 passed through the earth’s center.
. -
A
3=5 There is a series of 24 special great circles that pass
\ ‘:"\
ﬁi through the earth’s poles and are evenly spaced from each
other. These are called meridians and they intersect with
\i{ the equator at right angles. Meridians join at both poles.
.
A0 Forming other right angles to the Meridians are parallels.
!L! Parallels are small circles created by passing planes
:{ throdgh the earth parallel to the equatorial great circle.
B -
-
\ L
*:t See Figure 2.2. .
" ﬁ’-
. In order to determine precise locations on the earth’s
ﬁﬁf surface, latitudes and longitudes are utilized. The
oA
t{ longitude of a specific place refers to the arc (measured in
£y
S) degrees) of a parallel between that place and the prime
L% N
Lﬁ: meridian (which passes through Greenwich, England for
[} »" .: o
-35 reasons of history). Longitudes run east and west.
}1; Latitudes, however, run north and south. The latitude of a
!
.
xﬁ{ apecific place may be defined aa the arc (in degrees) of a
\ ‘\.':'\
EQ meridian between that place and the equator. Figure 2.3
gé shows an example. When the earth is considered as having an
- ¥ b
- . . . :
;Qn ellipse as a cross section (which it has) instead of a
Y
:& circular one, the length of a degree of latitude is slighcly
.’y
b greater at the poles than at the equator.
z
j;'.;.
14
o5 12
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C. ORBITAL MOTION

A presentation concerning orbital motion is basic to

satellite tracking. Gravitational attraction and

momentum
combine to keep a satellite in perpetual orbit above the
earth (in the absence of friction and external celestial
attractions).

1. Gravity
The understanding of gravity and orbital motion can
be traced back to Johannes Kepler (1571-1630) and Issac
Newton (1642-1727). Kepler is known predominantly for his

three laws of planetary motion. The laws are as follows;

(1) Each planet moves about the sun in an orbit that is an
aellipse, with the sun at one of the foci of the ellipse.
(2) The straight line joining a planet and the sun sweepsa

out equal areas in space in equal intervals of time.
(3) The squares of the sidereal periods of the planets are
in direct proportion to the cubes of the semimajor axes of
their orbits.

The above three laws apply equaliy well for
artificial satellites as they do for planets. Newton
restated and clarified Kepler’s laws. Newton was an
advocate of rigorous proofs whereas Kepler preferred to

state empirical laws based on observations.

Kepler’s first law stated mathematically is

£f = mavi/r (2.1)

13
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where: f=centripetal force needed for circular orbit,
n=mass of planet (or satellite) in orbit,
v = velocity of orbiting body,
r = distance between sun and planet (or satellite and
earth),
Kepler’s third law restated mathematically is

(m,+ m)p* = arx*a’/G (2.2)
where ml and m2 refer to the masses of two bodies that

revolve mutually about each other.

p period of revolution,

a semimajor axis of relative orbit,

G = universal gravity constant ( 6.67 x lothm;d‘ )

Newton also explained the reasons behind kepler’s
original observations. That is, Newton supplied the laws of
motion which are at the root of classical mechanics.

These laws are as follows;

(1) Every object remains at rest or in uniform motion
unless an external force acts upon it.

(2) The product o2f the mass of an object and its
acceleration vary directly as the resultant force, and
the change in motion takes place in the direction of
that force.

(3) For every action there is an equal (in magnitude) and
opposite (in direction) reaction.

In the case of orbiting planets or satellites,
gravity is the unseen force referred to in Newton’s first
law. Newton also postulated that every particle of matter

in the universe attracts every other particle. The force of

16
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this attraction is proportional to the product of their
nasses and inversely proportional to the square of the
distance which separates them. |
In equation form this is

F = Gm, m, /d? (2.3
where d is the distance between the center of mass 1 and
mass 2.

Orbital motion can be understood in terms of
Newton’s laws previously stated. The critical factors in.
putting a satellite in orbit (by the traditional launch
method) are speed and direction of movement at burnout.
Burnout is when the rocket engine shuts off and the
satellite behaves as an astronomical object.

As a satellite follows it’s orbital path it
continuously falls toward the earth due to the earth’s
gravitational pull. However, the satellite’s momentum

prevents it from really being pulled any nearer to the

earth. The satellite’s orbit is the result of two main

forces. The momentum of the satellite is a measure of its

vﬁl state of motion. The inertia of the satellite (recall

%E? Newtons first law) is that property that causes the

-

Eg satellite to resist acceleration and travel in a straight
i:g line. For the satellite to move in a circular path rather
gﬁ than in a straight line, it must continually suffer an

§§ acceleration toward the center of the circle. This

R acceleration is centripetal acceleration. The central force

17
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that produces the centripetal acceleration is that
gravitational attraction between the satellite and the
earth. Figure 2.4 illustrates this in vector form.
The period of an artificial satellite is directly
related to the size of it’s orbit; i.e, the closer the
satellite is to the earth the faster it travels.
2. The Center of Mass

The center of mass can be defined as that point
within a system that either remains fixed or move; as ifthe
entire mass of the system were concentrated at that poing.
For a number of particles the center of mass is defined as

Tt
L. = (/Mg OEMm T, (2.4)

An example of this for a two body system is

Kem = RX + MX, (2.5

m, o+ m,

Mass 1 is a distance x(1) from an arbitrary origin,
and mass 2 is a distance x(2) from the origin. Xd(cm)
represents the location of the center of mass. A solid
object can be thnught of as a collection of a great many
particles. In this case equation 2.4 applies.

Very often it is useful in certain calculations to
treat a particular body as if its entire mass is

concentrated at one point. That one point is the center of

nass.

18
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sl It can be shown [(Ref. 11 that a large sphere

N attracts other bodies as though the sphere’s mass is all
.

O

gl located at the center. This holds true as long as the

v

;}f sphere is of uniform density or is made up of concentric
v

o shells each being of uniform density. The earth is often
Y

5{; approximated as being a sphere made up of uniformly dense
=

WY shells [Ref. 2].

S 3. Egquations of Motion

i ._"- .

:lg A satellite in orbit around the earth will feel by
3 LSRN

P -;(‘h.

:xfa far the strongest gravitational pull from the earth itself.
e Other astronomical bodies, such as the moon or sun, do exert
YA

;fi' force disturbances but are too far away to exert a very
N )

-

. strong pull on the satellite. Assuming the gravitational
lk*; acceleration of the satellite is due only to the earth’s
‘-..':(.

-Sf gravitational attraction, g can be defined as

\“:-.

N g = Gm./r? (2.6)
v‘—‘)

- The value of g does vary with respect to altitude
‘ -r:':'

1?3 and latitude (since the earth is not really an exact
B J‘:"l'

o sphere). Tables 1 and 2 depict the variations of g. The
-;S values of g are close enough to allow an approximation of

the earth’s shape as spherical for most applications.

An orbiting satellite is considered to be in the
earth’s gravitational field. The vector symbol g refers to

this field and is defined a-:
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TABLE 1

VARIATION OF g WITH LATITUDE AT SEALEVEL

Latitude g(m/s?)
0°® (equator) 39.78033
10-° 9.78195

20° 3.78641

30° 9.79329

40° 9.80171

SO 9.81071

60° 9.81918

70° 3.82608

80-° 3.83059

90° 9.83217

TABLE 2
VARIATION OF g WITH ALTITUDE AT 45S° LATITUDE

Altitude(km)

380000

gim/s?)

9.806
9.803
9.734
9.782
9.757
9.710
9.600
8.530
7.410
0.003
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g = F/m 2.7
When an object is a distance h above the earth’s
surface it has potential energy defined as
U = -(-mg>h = mgh (2.8
Gravity is a conservative force pointing to the
earth’s center and has the value (-mg). The gravitational
force exerted on an object in this field can be derived from

the potential energy equation as

F = -du =_d__[—G~M‘th = -GMnm (2.9
dr dr r r?

A more general form for potential energy invoking
the universal constant G is
U = -GMm/r (2.10°
Potential energy can be converted into kenetic
energy [(Ref. 3]1. As an object falls to earth it loses its
potential energy aas its height decreases but gains kenetic
energy as its velocity increases. Kenetic energy is

mathematically defined as

K = GMmn/2r = mv?/2 (2.11)
The total mechanical energy is
E =K+ U (2.12)
Orbital motion can be considered as motion in a
plane. For one full revolution around the earth the
satellite remains in a plane as it traces out an ellipse or

circle.
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The velocity, period and altitude of a satellite are
all inter-related. The period of a satellite [(Ref. 2) can
be defined aa

T= 2xCR + hO/v , (2.13>
where v is the velocity of the satellitse.
The centripetal force, is often defined as

F = m,v?/(R + h) (2.14)

whaere m is the mass of the satellite.

It is obvious to the casual observer that the
centripetal force is also in part a function of the
satellite’s altitude and velocity. Polar coordinates are
used in figure 2.5 to illustrate the elliptical orbit
variables.

4. Uniform Circular Motion

Sometimes a satellite’s elliptical orbit is that
perfect ellipse the circle. If the satellite’s orbital
velocity remains unchanged in a circular path then the
satellite is moving with uniform circular motion.

Since the orbit of a two body system (earth and
satallite) is often in a plane it is possible to use polar
coordinates to develop basic equations. Figure 2.6 shcws
the relation between polar and rectangular coordinates.
Velocity in polar coordinates for circular motion can be

expreossed as
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V = reé (2.15)
where 8 refers to motion in the theta (8) direction.
Acceleration is found by taking the derivative of the
velocity

a = -r8°’t + res (2.1)
Energy can be expressed as

E =K+ U= m(r*8?)/2 - GMm/r (2.17)

1]

and angular momentum as

-
"

mr’o (2.18)

Uniform circular motion is easier to'deal with than
non-upiforn circular motion. There is only an angular
component of velocity present in the équation. It is often
useful to simplify the satellite dynamics in order to more
easily manipulate equations.

S. Eguations of Motion in Polar Coordinates

Consider the special case of a satellite in a
circular orbit. This can be treated as motion in a plane.
Polar coordinates are especially usefull for this case. The

two variables that define motion and position are the radial

coordinate, r, and the angular coordinate, 8, conversion

D

f
Y ety
st
AR
LS N

f}
iy by

between rectangular coordinates and polar coordinates is as

KA
St la]

v

®+ follows.

AN r = yX* +« y? X = rcos(8)
o4

o 8 = arctan(Y/X) Y = rsin(e)
ol

s.f Figure 2.7 illustrates this.
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Polar coordinates are often used any time
curvilinear motion occurs. In Figure 2.8 basic curvilinear
motion is shown. The differential length dr has components
in both the r and 8 directionas. The vector r can be
oexpressed as rn where n is a unit vector in the radial
direction.

Velocity can be defined as:

v = d(r) = d(rn) = dreny + rdn. (2.19)
- dt dt— dt dt

Rectangular coordinates are used once again to achieve an

expression for the time derivative of the unit vector n and

LIPS

n.= cos(8)i + sin(8)) . ng, = -8in(8)i + cos(8))

n, = -sin(8’ib + cos(8)38 = (-sin(8)i + cos(8)3)0 = 6n,
Ny = -cos(8)if - 8in(8)3)8 = -(cos(B®)i + sin(8)3)8 = -On

Velocity can now be expressed as;
V=1rn «+ rfn,
Following the same rules of differentiation acceleration can

be derived.

a=V=rn_ +zen + reén +ren, -ré'n
Simplifying,
a = (r - ré‘)rlr + (2fé * ré)q” (2.20)
1£& For circular motion the radial component, r, remains

conastant. Only 6 variea. Therefore;

V = rén, (2.21)
a = -ré'n_+ rén, (2.22)
26
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::ﬁ The acceleration term directed in the negative radial
) direction is the center seeking acceleration.
~-.:'
Q{ Figure 2.9 depicts the directions for the force vectors.
AN
" The sum of forces is calculated as follows:;
\ IF = ma_ = m(r-r8?)n (2.23)
AN - —-r -
’,:‘ _ _ ‘e )
-}: ZF, = ma, = m(r8é + 2r@in (2.24)
‘iﬁ Using differential equations and state form motion can be
represented as in equations 2.27 and 2.28.
AR
O dr/dt = V. (2.25)
”;i de/dt =cv (2.26)
: dv /dt = Vj/r - k/r + U - &, (2.27)
‘(--
oy - d /dt = -2Viw/r +(U -§)/r (2.28)
x':'-. )
'?f’ where U = F_/m and U,= F,/m. Both variables represent

thrusts. The symbols §. and 6, are used to represent
disturbances which are suumed to be zero in this case.
D. SATELLITE SENSORS

Various sensors on bocard the satellite are employed to

.‘ Beo & 0 “
‘ ‘I‘. u'_ ...l'. '- l'.l

[

L
]

LR

keep the satellite itself on track, and to detect and track

J'-\"

;EE a possible target. The satellite guidance ayatem usaes

‘; sensors for measuring certain vehicle dynamic variables.

EZ Such variableas include satellite acceleration, velocity,
fég position and angular velocity. Guidance syatems generally
;sf determine these variables, compare the received information
ksa with desired parameters, and generate correction commands.
2

-

~

v
|V S

various types of sensors include inertial , optical and

m

radio sensors. The satellite may make use of gyroscopes to
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pkﬁ establish a set of reference axes on board. Active thrust
S control is used to align the body axes with the refazrence
-:.‘n
o axes. Once the satellite has established the craft’s
o
"ﬁ position and attitude active control components are
N
\
- activated. These components respond either to a telecommand
s
-§3 from a ground station or to the satellite’s on-board
w
b computer in order to correct the satellites’s status. In
A some applications where perturbations are likely, feedback
) o
> ". <
';q control is added to the active control of a satellite. In
-t
~.g_1

some cases optical sensors are used in conjunction with

B inertial equipment. Optical sensors include such devices as

-~

;:; sun finders. sun sensors, planet sensors, celestial

oo

:;; trackers, and horizon scanners. The gyroscopes and

i__ accelerometers are examples of inertial sensors. In certain

b

‘;; applications the inertial sensors provide short-ternm

. <

;h stability and optical sensors provide long-term stability.

&f- The gyroscope is an inertial guidance system that is

{;. often used for ships, aircraft and spacecraft. A gyroscope

:gg is a device that possesses a high rate of spin about an axis

ivﬁ of symmetry that has freedom of angular rotation. Examples
of gyroscopes are the rate gyro and the integrating gyro.

{ ' Surveilance satellites normally have an entirely

5’; different set of sensors for target acquisition. Very often

i; this type of satellite carries several types of information

‘iﬁ gathering devices. High resolution optical devices, radar

’i? scanners and infrared capacity can all be included in a

o

>
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5 satellite paylcad. Passive systems are sensitive receivers
i,‘ which normally provide data on bearing and bearing rate.
EE; These systems have the advantage that they do not alert the
zﬁ target of their actionas. Optical techniquea normally
; : involve lenses and cameras. This can be very precise,
iif especially at low altitudes.
[}
Ei& Radar is an example of an active sensor. It bounces
o radio waves off a chosen target. This is excellent for
w.
%{: determining both bgcring and range. Both optical and radar
o
:}E methods can be degraded by poor atmospheric conditions. For
_!; the radar tracking technique noise is always the main
ag limitation.
ﬁ;i Inverse scattering methods are being developed to enable
et polarimetric radar to obtain better target information.
Eé This procedure involves illuminating the target with
ié polarized waves and observing the amplitudes and phases of a
C{ set scattered waves.
.?a Another type of sensor is the synthetic aperture radar
'Eg system. This is based on holography methods. Holography
;E has the ability to record three dimensional pictures and
éz focus sharply on both the near field and the far field at
;i the same time. This involves recording a wave interference
.g? pattern. A microwave generator is used to provide a
‘;S constant frequency microwave signal as well as a reference
:EE wave. This is considered to be a highly precise and
<{; accurate sensor.
o
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Passive sensors are normally infrared sensors. There
are two major technigues used in enfrared detectors. The
two main types are called photon detectors and thermal
detectors.

In photon detectors, the technique used involves a
photcn of infrared radiation being absorbed by a semi-
conductor electron which raises its energy level into a
conduction band. Photons with less energy than the band gap
produce bo signal and are thereby effectively filtered out.

Thermal detectors function be sensing the temperaturse
change resulting from absorption of infrared radiation by a
suitable element. Usually, this absorbing element has sonme
temperature sensitive electrical property such as
resistivity so that the temperature change is sensed
electrically.

One device often used in passive detectors is the
radiometer. This device is a broadband, dual frequency ,
low noise, solid state, remote controlled mechansim.
Radiometers are used to obtain high resolution imagery from
low altitude satellite’s.

A promising type of detector is the Silicide Schottky
diode based infrared camera. These are easy to manufacture
and have excellent performance. The camera focal plane
consists of a two dimensional array of metal electrodes
fabricated on a silicon substrate. The focal plane is back

illuminated. When an infrared picture is observed, hot
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carriers are emitted from the focal plane electrodea. An
electronix image of the scene is formed by accumulation of
these carriers on a pixel by pixel basis.

Another technique involves the Charge Injection Devices
(CID). These devices are surface charge devices that
collect photon generated charges and store them in MOS
capacitors.

Other types of infrared detectors include the Lead
Sulfide (PhS) Detectors, Lead Selenide Detectors (PbSe).
Thermister Infrared Detectors and Indium Antimode Charge
Injection Devices.

One tracking technique available to surveillance
satellites involves the use of the doppler effect. The
satellite emits a signal and then receives the signal’s
return after it reflects off a given target. The change in
frequency as a result of the relative motion between
satellite and target leads to a calculation of the targets
velocity. Ref 3 defines the return frequency,. , detected

by the satellite as

L= v (l=-u/ec)/ 1-Cu/c)?, (2.29

where

L

frequency detected if both were at rest,

c
"

relative separation speeds,

a
"

speed of light,
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Artificial satellites are often subject to a variety of
disturbing forces. These include atmospheric drag,
variation of atmospheric density, solar radiation pressure,
surface charge drag, meteorite impacts, lunar or solar
gravity caused perturbations and possible encounters with
hostile killer satellites. These potential disturbances can
act seriously to impede the position as well as the attitude
stability of a satellite. Fortunately, there are passive

and active stabilization systems to enable recovery from

most perturbations.
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£¢ IITI. SATELLITE COVERAGE AND COORDINATE SYSTEMS

e

-

s

}ﬁ This chapter includes satellite coverage, spherical

v Y

e geometry and coordinate systems. A coordinate system which
’iﬁ: enables analytical calculations of satellite observer and
n_‘:\:

fV; tracker is desired for at least a single case. Several

B

e systems are explored in an attempt to find a suitable set of
bW

.kﬁ: referance axes to establish a base for more complicated

ﬁﬁ% analysis by computer. A simple case is introduced and an .
AV_PNC. § Bl
,!3 appropriate coordinate system is presented. g
;f¥ A. GENERAL SATELUITE COVERAGE

1;~ Basic information on satellite coverage is discussed

SR here. An understanding of geometric swath width and

o

i&‘ precession is required for a detailed study of satellite

A

SO tracking.

h

F{ 1. Geometric Swath Width

D -

{35 As a satellite travels around the earth 1t covers a
-

_¢: certain amount of surface area. This area 1s i1n the form of
¥ N
‘gﬁ a spherical cap (figure 3.1). As the satellite’s altitude
o

fﬁ' above the earth increases the area of the spherical cap

RO increases. The area of the spherical cap [(Ref.S] can be

®

p; calculated as
N

™.
K- A = 2rR?(1-8in(90°-8)) (3.1
J‘:.a
R & 7
P

e

":'-
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where R is the radius of the earth and 8 is the angle shown
in Figure 3.2.

It appears from this that a high altitude orbit is
beneficial. However, it must be considered that as
satellite altitude increases, satellite sensor accuracy
decreases.

A

If a target is at point ‘a’ (as in Figure 3.2) it
can be viewed by the satellite as long as the satellite is
between points 1 and 2 on its orbit. This portion of the
orbit Keeps the satellite above the horizon with respect to
the target. The amount of time the satellite is above the

horiZon is calculated [(Ref. 5] to be

t = 28/w (3.2

where w is the angular velocity of the satellite.

As the satellite progresses in its orbit the svherical
cap of coverage moves with it. As i1t moves. the cap traces
out a ribbon around the earth. The width of the ribbon
(Figdre 3.3) is the geometric swath width (GSW).

Figure 3.4 illustrates the G3SW as the very dark arc on
the earth’s surface. The dotted line from point 1 to
peint 2 is tangent to the earth at the surface location
directly beneath the satellite. R is the radius of the
earth and h is the satellite altitude. The arc, a(l), in

Figure 3.5 is one half the dark arc in Fiqure 3.4. Simple

gaeometry proves that arc a(l) = RS. Therefore the

35
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GSW = 28R. Figure 3.6 depicts a right triangle. From the
rules of trigonometry cosine(8) = R/(R+h). Therefors,

8 = arccosine(R/(R+h))

It follows by substitution that
GSW = 2R(arccosine(R/(R+h)>)) (3.3

2. Ground Track and Coverage

As a satellite travels in its orbit the-distance 1t
moves in one full trip around the earth is
‘ D = 2w (R+h) (3.4)
where R is the radius of the earth and h is the satellite’s
height above the surface. The orbital speed is calculated
{Ref.5] to be
S, < 4.2685(R/(R+h)) km/sec (3.5
The satellite also has a ground speed and a ground
track. The satellite’s position can be projected on to the
earth’s surface. This point on the earth’s surface directly
below the satellite is called the gsub-satellite point (SSP).
As the satellite moves its SSP forms a ground track which
can appear as simple as a circle about the earth or a mere
point on the surface or they can appear very complicated.
The ground speed due to the satellite’s motion alone is
N = 7.9053(R/ (R+h))km/sec (3.6)

However, the earth does rotate at about 0.267472

km/sec at the equator. The actual ground speed depends on

the inclination of the orbit plane to the equatorial plane.
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Figure 3.6 Right Triangle
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For all cases the ground speed is less than the actual
orbital speed. As the ground track is formed so is the
ribbon whose width is the GSW. Because of the earth
rotation beneath the satellite the swaths may overlap at
some places yet never cover other places. If the earth’s
rotation is ignored and its shape is assumed spherical a
satellite staying in one plane traces the same circular
swath on every orbit.

If the earth’s equatorial bulge is taken into
account the plane of the orbit precesses about the earth’s
axis of rotation. This precession is caused by the non
central gravity force field in which the satellite travels.
It is measured by the rate of drift of longitude on the
surface of the earth.

For an elliptical orbit the rate of precession is

Q@ = 9.95(R/a) « (cosine(i)/(l-e?)? 3.7
where ﬁ = orbital plane precession rate in degrees/day
R = mean radius of the earth
a = semimajor axis

@ = eccentricity of ellipse
1 = angle of inclination of orbit
For the special case of a circular orbit the
precession rate is
Q = 9.95(R/(R+h)) » cosine(i) (3.8)
If the effect of this precession is ignored, the

motion of a satellite lies in a plane passing through the
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center of the earth. A satellite making one revolution per
day at O°® inclination to the equator is stationary over a
point on the equator. In this case a stationary spherical
cap on the earth’s surface is the only area covered.
Commercial communications satellites are usually
geostationary. This is a special case of the synchronous
orbit (24 hour orbit). If a synchronous orbit is inclined
to the equator the ground track is a figure eight.
3. The Spherical Triangle

At this time all the simplifying assumptions are
invoked to establish a base for further analysis. The
satellite is traveling in a circular Qrbit above the
equator. Obviously, transformations to other orbits are
readily available. The SSP is always on the equator. There
is a target traveling on a steady course at a constant
velocity and therefore following a great circle heading.
This is not an unreasonable assumption. It is normal for a
ship or an aircraft to keep to a great circle heading at a
most efficient cruising speed and altitude. The target is
assumed to be on the earth’s surface or very near to the
surface. Figure 3.7 illustrates the paths for both the
surveilance satellite and the target. The target track is
inclined i* to the satellite track. It is assumed that both
can be considered to be moving on the surface of the same

sphere with transformations readily available to the actual
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satellite position. The earth is assumed to be a perfect
sphere and is approximated by a point mass at the center.
The two paths intersect in Figure 3.8 at point O.

The letter S represents the present position of the
satellite and the letter T represents the present position
of the target. These three points (0,5 and T) on the
surface of the sphere define a spherical triangle.
Spherical trigonometry is used to attempt to find a suitable
coordinate system for the satellite tracking analysis.
B. COORDINATE SYSTEMS

Several coordinate systems are tested at this time. The
set of reference axes is a relative one. It is assumed that
the origin of the coordinate system is moving with the
satellite relative to the earth. Appendix B explains.

1. Use Variables ¥ and &

Supposedly any two independent variables from

Figure 3.9 can form the basis for a state-space model for
target tracking. The variables & and § are chosen for the
firat attempt to form a suitable coordinate ayatem. The
original four state varisbles x(1) through x(4) are defined
below. Derivatives are found for the four state variables.
In an attempt to establish a least-complicated structure,

however, these lead to other state variables and other

derivatives: i.8.,
x(1) = cosine(®)
X(2) = sine(®)
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x(3) = cosine($)

x(4) = aine(d)

Taking derivatives of two of tha above variables yields
X(1) = -x(2)

x(3) = -x(4)

Using the trigonometric law of sines X(2) can be defined as

x(2) =/sine()sine(r) = sinedsine(s)
L sine($) J sine ()

Since in this case « and sine(x) are constants the second
identity is easier to use. Sine(a) is replaced by the
letter A and sine(d) is replaced by x(4). This yields
X(2) = sine(N)X(4)/A
The same procedure is used for X(4). The law of sines
provides an easy alternate form. X(4) can be defined as
x(4) = sine(v)A/sine(8)
Table 3 summarizes the mathematics of expanding the state
space. It is soon obvious that this state space is not
readily reducable to a single structure by increased
dimenssion. It therefore is abandoned.
2. Use of Variables 6 and &
Two new independent variables are now used in an
attempt to generate a state-space model. As before the sine
and cosine functions are employed.

X(1) = sine(®)
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TABLE 3. STATE SPACE FOR VARIABLES &

{l

and §
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o |
= |
s X(1) = cosine(®) X(2) = sine(® T
.?__. X(3) = cosine(s) X(4) = sine(s) |
;_ X(1) = -X(2) and X(4) = -X(3)
‘:‘\'3: X(2) = sin(Dsin(8)/sinfa) = sin(PX(4)>/A |
X(2) = cos(MMX(4)/A + sinTPX(4)/A
f. Let X(5) = cos(TUNX(4) and X(6) = sinMPX(4) i
X2 X(5)> = -sinr) (P X(4) + cosPNX(4) + cos M (M X4 |
3 Let X(7) = sin () (Y *X(4) = |

and X(8)

cos (MHNX (4)

and X(9) = cos(TD (TP (P X(4)
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X(2) = cosine(®)
X(3) = sine(8)
X(4) = cosine(8)

The derivatives for two of the above are
*(2) = -x(1>
X(4) = -x(3)

As before sine(a) is represented by the constant A.
The law of sines is also used again. Table 4 summarizes the
mathematics of the expanding state space. As before these
variables as a basis for a coordinate system do not seem
suitable for tracking purposes.

3. The Projected-Orbit Technique

This technique involves projecting the circle which
is the target track onto the equator which is the
satellite’s ground track. Figure 3.10 illustrates the
technique. The target position T is projected down onto the
satellite’s orbit at position T’.

Let v = w(s) (the angular velocity of the satellite)
and let é = w(t) (the angular velocity of the target).

For convenience let Y = ST’ (see Figure 3.11) and X

= ST’ the arc length (see Figure 3.12>. The arc length OT’

= OT and angle ¥ = angle ¥’. It follows that
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1
T

t 4
r
s

X<

sine(®) X2

cosine(3®)

P
VJ! _’""

-
»oe

X3

sine(8) X(4)

cosine(8)

X(2) = -X<1) X(4) = -X(3)

X(1) = sinc/sin¢@) X¢(3) = sin(a){sin(®))
sin(a) sin(V]

e XL X(3)sinY /A + cos(TPRTX(3)/A

- Let X(S)

X(3)sin(M) and X(6) = cos(TPNX(3)

= X(S) = X(3)sinM) + cosTPNX(3)

o Let X(7) = X(3)sin(M) and X(8) = cos(TPNX(3)
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X(7) = X(sin(M) + X(cos(TPf) = X(3)coa@N; (X(3) = o>'
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Figure 3.11 The Line Segment ST?!
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Taking time derivatives we find

8 - 1= @t) - WCs)

To obtain a state space interpretation Y and X and
their derivatives are defined. Figure 3.13 shows an angle
bisector which splits 8 and ST’. This forms two right
triangles. Using geometry and trigonometry it follows that

sine(8/2) = T’A/R
AT’ = ST’/2
ST’ = 2Rsine(8/2) =Y
Y = 2rcosine(8/2)8/2 = Rcosine(8/2)8 =

Rcosine(8-1) (w(t)-w(s))

X = ST’ = @R
X = 8R + R8O,
but é = Q3

therefore,
X = R8 = RCw(t)-w(s))

Recall R is a constant for this case and therefore R
is zero.

With Y and X defined above a logical state space is
originated. The measurement equation is also important.

In order to define a measurement equation
Figure 3.14 is constructed. Note that points 0,S and T’ do
not form a straight line.

OT” # 0S + ST~

However, in terms of arc lengths the following applies;
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- OT’ = 0S + ST*

The dotted line bisects angle « and therefore

O BT = TT’/2

f" Using geometry and trigonometry it can be shown that
. TT” = 20T’sine(a/2)

'. and

BT/0T = sine(x/2)
From Figure 3.10 it follows that

OT’ = 2Rsine((o+T)/2) T ﬁ

A new triangle is defined in Figure 3.15. Using simple

!;! geometry 1t is obvious that
} i B = ®/2 - a/2,
?f; and by simple trigonometry

- DT = TT’sine(B)

:E: and
0N
YR DT’ = TT’cosine(f)

. tangent(€) = TD/SD

i;% therefore

izi SD = TD/tangent(€)

& The line segment ST’ is solved for

ST’ = 3D + DT’ = TD/tangent(€) + TT’cosine(f)
.Eﬁ; It is essential to express ST’ in terms of usable variables.
gl; : ST’ = TT’(sine(B)/tangent(€) + cosine(8))
-
:3 1s achieved by substitution for segment length SD.
ol
;i? TT’ = 20T’sine(a/2) = 2(2Rsine((u+v)/2))sine(x/2)
ﬁ therefore
51
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ST’ = 4Rsine:g+v)sine(a/2) sine(f)  + cosine(B)
- 2. _tangent (€)
Let 4Rsine((o+vr)/2)sine(a/2) = @ for convenience.

Then ST’ = @ (sine(ﬂ)/tangent(e) + cosine(ﬁy. Also,

recall that B8 = ®/2 - «/2

ST’ = Qisine(w/2-q/2) + cosine(w/2-a/2)
L tangent (€)

It is important to relate X and Y.
X = ST = 8R and Y = ST’ = 2Rsine(8/2)
For convenience use o = X/R

Y = 2Rsine(x/2R)> and R = X/o = Y/2Rsine(o/2)

therefore ”

o

X = ovY¥/2sine(o/2)

It is now necessary to solve for € which indicates bearing.
Y = ST’ = Q@cosine(a/2)cotangent(€) + Qsine(«/2)

cotangent(€) =___ Y - _sinefl(a/2)

@cosine(a/2) cosine(a/2)
Taking the arcceotangent of each side, substituting back 1in
for @ and then simplifying leads to

€ = arccotangent sine(X2R) _ - tangent(a/2)

sine(3/2)sinel{x)
This is the measurement equation. The final result is a two-
variable state space and a measurement eguation. From the

measurement equation an observer can be modeled. Table 5

summarizes the results.
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TABLE S. STATE SPACE IN X AND ¥.

State Space
B o= wit) (3.9
X = RGwu(t)-w( ) (3.10)

Bearing information (measurement)

. € = arccotangent sine(x/2R) - tangent(a/2) (3.11)
sine($/2)sine(a)

Table 6 summarizes the results for an alternate

coordinate system.

B

TABLE 6. STATE SPACE IN Y AND &.

State Space

Y =R 1- Y* (w - w ) (3.12)
$ = w (3.13)
Bearing information
€ = arccot Y - tan(x/2) (3.14)
2Rsin(&¥/2)cos(ax)

A previously researched thesis (Ref 6] provides a

useful coordinate system based on latitudes and longitudes.

Table 3.4 summarizes this coordinate systenm.
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IVv. OBSERVABILITY

At this time it is important to determine observability
of the target. Assuming the satellite’s detectors yield
only the bearing information (as developed in Chapter 3),
it is necessary to obtain the target’s position defined with
X and 8. Since this cannot be measured directly it muat be
estimated in asome way. Analyzing the state equations from
chapter three it appears that if ._-and . are given the
know{edge of X(0) and 2(0) (the initialed astates) are
sufficient to determine X(t) and 3(t) all along the
trajectory. .

X(t) = X(O) = thwt('t)-u;('rndr’
o
TCt) = F(OD jtwr (»d
The possibility of estimating the ;Late from the ocutput
measurement under the assumption that the system dynamics is
completely known is defined as observability. Therefore
the observability of the system must be determined.

All changes in a given syster must be reflected in the
output for the system to be observable. Figure 4.1 shows a
simple example. The states X and i are estimated from

. knowledge of the output. If all states are observable for
all times then the system is completely observable. This 1is

i defined in detail in [(Ref. 61].
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Figure 4.1 A Simple Systen

The test for observability on linear systems is fairly
straight forward. 1In general the observability of linear
systems is established by examining the linear
independencies of the columns in the matrix function
C(t)E(t,t.), where C(t) is the measurement matrix and 3(t,t)
is the state transition matrix. For the linear time
invariant system this leads to a simple rank test on the
appropriate observability matrix. To illustrate this
approach we may consider the following linear systenm,

X = AX

Y

CX
where A is a square matrix, X is an n-dimensional state
vector and Y is an m-dimensional measurement vector.
Assuming that Y(t) is differentiable up to the (n-1)th
order, we have

Y = CX = CAX
Y'= cax’= ca‘X
Y'= c& x

A matrix is set up as shown:
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where Y is the extended measurement vector of dimension mn.

The matrix @ is the observability matrix and has
dimension mnxn. Clearly if rank @, = n, X can be uniquely
solved in terms of the measurement ?. It should be noted
that differentiability of Y(t) is not required for
observability of linear systems and that the above result
can be derived in a different way. The presented procedure,
however offers the possibility of extending this result to
the oObservability of non-linear systems; namely in the

~

equation, Y = d,X, any subset of n linearly independent
equations can be considered E = @QX, @. can be regarded as the
Jacobian J of Y with respect to X. Hence if rank J = n the
linear time invarient system ias observable.
A. OBSERVABILITY OF NON-LINEAR SYSTEMS

In the past it has been very difficult to determine
observability of non-linear systems. Recently, however, a
number of new methods for obsevability testing have been

developed.

A fairly simple test that determines observability in

non-linear systems is developed in (Ref. 61l. This new
method tests observability and identifies any unobservable
states that may exist. If the system is unobservable than

the measurement doesn’t provide enough information for state
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L A non-linear system can be represented as follows:

-,

--L. .

o X(t) = £(X(t), ult),t) (4.1)
1)

Qi where £() is an n-function, X<R", UCR .

» M u

0%

.':'_n The measurement equation is:

.A.‘_\

b Y(£) = h(X(t),t) (4.2)
A where h() is an m-function, Y& R .

) ;"

e Y(t) must be differentiable up to the (n-1) order and
~' Udt) must be differentiable up to the (n-2) order. A state
"_,7'3 X. (t.) is observable at t if knowledge of the input U(t)
L, ..

-1_'.-' _

N and the output Y(t) frox time t. to t , enables X (t.) to be
, ::::: determined.

A Equation 4.2 is differentiated to provide a necessary
N .
OO system of non-linear measurement equations.

N
o .-n'
Ko Y = h(x)

- Y=0h +0hJx = hy + h,f = h, (x,u
NS —_— oY

".\: ‘) t g) X 5

Y

o ’

:J'-:- Y = Jh 0‘5}1[}_)_1'__«’-5[:]:5:
f‘: St o %x o Ju o

= h + hxf +« h _u = h,(x,u,u’

e o

‘:::'. Y = h(n—z)—t + hegp-o s # hzn—uuLL"'--

'}::— (n-3) n-2) 4 -2
.:;--; * h("-l)u LL( = hn.( (X, L - sl )

Define an mn measurement vector Y by
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Y =
Y
) and an mn function H() to be
h
H¢) =
h
[ ™

The functional relation in vector form is
Y = H(x,v) (4.2)

where v(t) is a function of Uu> , 1 = 1,....(n=-2>.,
With respect to equation 4.3 the question of observability
can be developed as the existence of an inverse of this
function. Clearly, this is related to the Jacobians of H.
However, for the case of linear systems an inverse, if it
exists, has to be unique. It will be shown late that here
this need not be the case.

Two conditions must be met for this non-linear system to
be observable in the strict sense. These two conditions are
connectedness and univalence. Connectivity is a necessary
condition for observability in the strict sense and a
necessary and sufficient condition for observabiiity in the
wide sense. Connectedness is satisfied if every state is
connected to the ocutput in some way. Univalence is

satisfied if every state is uniquely determined in terms of

the measured output. A one-to-one mapping is considered

S9
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3§3 univalent. Both conditions together are necessary and

N;Q sufficient to establish observability in the strict sense.
,E}' To explain this consider Y(t) as expanded in a Taylor
‘{1 series.

') . ,

-“f{: YCE) = y(t_ ) + y(t.)(t-t ) + %y ~(t,_)(t—t< Y ..,
3*5 . /-1 Y (B (bt )+ Tt

5{: Knowledge of the measurement trajectory Y(t) is

;?y equivalent to knowing the coefficients and remainder in this
%g' equation. This Taylor series expansion is considered unigue
ﬁy and therefore the coefficients are also unique. The

:{» coefficients are the elements of the measurement vector Y.
aﬁj Therefore, any state X, (t) is observable as long as it is
;}V: connected in a one-to-one manner to an element of Y. If the
j;t connection is not one-to-one the system is observable only
Egi in the wide sense. An example of this follows.

o Xi= ¥

O _

A X =ty

Ezi In this example X can equal either the positive or

?{ negative square root of‘Y. This is a multiple valued

;;% function. Therefore the mapping is not one-to-one. Hence
|Eéz the system cannot be obaervable is the atrict sense.

Eﬁ As mentioned earlier the connectedness condition is

]

]

satisfied if the existence of an inverse of the function

Loty ty Ky
. l“-.
Mk i)
yfy teta

can be established. According to [Ref. 6] the inverse

t
I

_Qg function is considered established if the determinant of the

‘5¢ nxn Jacobian of H does not equal zwro for all x and v. If

e
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AN J = O then one or more statea are unobaservable. If H has
o more than one right inverse then univalence is not satisfied
RO

13?% and the system is only observable in the wide sense.

??f; However this will suffice for this case.

ﬂigﬂ B. JACOBIANS AND NON-LINEAR ANALYSIS

’igz Recall from chapter three that two possible bearing-only
\.'_".

i;%s measurements have been found. These are illustrated in

e Tables S and 6. Both the measurement equations (bearing-
SN

.&ﬁf only)> are highly non-linear. The Jacobian matrices in

iﬁg Tables 7 and 8 are defined using the measurement equations.
058 These Jacobians are necessary for observability

Eﬁg analfais. It is essential to ascertain whether or not their
RN

ﬂ;ﬂ determinants are equal to zero. The Jacobians in

Iff Tables 7 and 8 are based on the state space and measurement
;;& information available in Tables S and 6 respectively.

E:.' The calculations for'? » NI K0 S Ly s AT andgkéQQ,
55&: concerning the variable X are in Tables 9 through 11. The
féi% result of the calculations for ii.,ju{j/, Q/Véz,ufily)/ and
.£?§ d?/ugy concerning the variable Y proved very complicated and
:ﬁ?. are therefore not used.

AT

é;% It is obvious that the determinants of these Jacobians
Sgé are going to be difficult to analyze. Table 12 illustrates
‘ﬁzg the determinant solution. To discover whether or not a =zero
Eigg value is achieved two separate methods are invoked. First,
Eiiﬁ a simplification is utilized. Recall from chapter one that
;$é; a satellite is restricted regarding the amount of arsa it
‘ ._s:.::f

i
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can cover.

and v are restricted.

(X=R(Z-7)).

Therefore the numerical value of the angles ¥

The development of the spherical triangle in

TABLE 7 JACOBIAN UTILIZING X

The variable X is composed of & and ~

=)
Yx

-~

o |

N
A *

TN

TABLE 8 JACOBIAN UTILIZING Y
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TABLE S JACOBIAN - X - PART 1

-
{ . , -
- . ) . ,’IX ., /X
V- -/ J@;@fe)m);mmz)-c@mg )S,MQ!
F[EN2R) 1 e\ sine ) Sin(@
‘ 5‘”{"()3@({//—1) QSR(&» L N'\(Q(_}' Ta 2)
QW?/ - —(os{X/2R)
X AR
sea i ! /- ‘ N -
S inlviR) _tm‘.t}/;)' g,,;éa&\)S\r)(r’/,z)

Snea jonida)

Sin(XzR) e (I2)

U% = ? Sll‘;(é//u:f)
i < \
. \2 .
l+(”‘“[)</”) —taﬂ("‘/ay} Sine)Z N (E/R)

S )sin(@/a)




TABLE 10 JACOBIAN - X- PART 2

c,/~ 7/’“//6( =

( [s.r\fx/w) N —“' 2 i
! = Tevn(#4) 2R Sip i) Sur{Z/2
2 * Lcn‘(“) cn//2) ] AR / )

Ty - _
)n,L/vR/ _tan /s 1 X Xle, </ s )
J Lnk) _\./I)ZE/Z) ¥ [ZJL LC%R)S n‘(" ¢S ;,\///(_b (%U //{’/ n\

e
sn{v2R _ 2)
;’,/ gl [H.n ) "z tdﬁl{ /79 \Fc,n(‘x\ p/d/ﬂ>

-
-

snn/ )smz )+ch(ZR)cL5( )
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TABLE 11 JACOBIAN - X - PART 3

5 | /’SmC(QR) ’-f W (= \* - p 2,
8 ! T(&n/m)sn.((//z) * ('/3?/} Sin&)sin (4'/,-2)

t

- N
"/SIOLX/
SA_&SIQCO\ ulp(J/Z) ‘f—GnL j m/_x- LC{/ /CC éép>v‘, JSI ( JC“S’JI

L ( [sin(XzR) 2) . 2
ZI ““{s.'né)«)s;n(a'/z)’f““é’”]ﬂ Sin(a)Sin (7/2)

m—
)

1
!

~ | cos(, Yees (% )+ Lsinft)oil) | 4 -

L}

X ccs(—l‘- )s{n(gf) - % 5"”&%‘) CC'S{%) %%)_
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TABLE 12 DETERMINANT OF JACOBIAN
[ N\
r
| 0
; I |
’ TSin(var) R jz ) 3 *
‘{] L.\,.n(u)s-n(’”z) (%) Sint(=x) Sin C¢/L)
L
'D"
r, p ) -
IS\n(O\);,m(:l/? TO. \(ﬁ’zlbn (‘)(z_ﬁ Q:n{J fodt Q,n/é}ej(':; _é)‘l
§l+;s_‘.h_0_(/£i?_)_—-T@v\(¢(/z7 ZS‘n(-,() £n (//3}
. ’& SonlA) 2 0{dyz) J {
oy .
—_ !.i ('CS(—X" )COS /’2" “’ﬁ S\kl/_éfjstﬂ(_,’é) L+
| 2R &R (42 2 ZR 2 2
L‘?C:J/L)S (g] _£= m L,c ,z cos(#z) ,C&) ( Yer) |
ST T 2/ 2 zR 5,,,(0/2
/S (K2R ) g ﬁ‘ '
7 0.1 A SN
«@m(o\)&r[f/z )(/2) QCC/ ’ A//)‘-R /Zjuc
X
k (S/o/«)S//g/Z/z)
Y wn("sp ) SZZ)
+ /X s:n(4)+@s/a (_og/é(jf s ) ) ]
D 2R 2F 2 Sinl#2)
N
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chapter three assumes a limit to angles ¥, v and «. For the

purposes of this work the range of possaible values for these

angles are confined as follows;

¥: O (plus epsilon) radians - w/4 radians
T1: O (plus epsilon) radians - w/4 radians
x: O (plus epsilon) radians - wx/2 radians

These limitations are reasonable for this particular
case and they enable a useful simplification. For small
angles the sine of that angle can be approximated as the

angle value itself (in radians). Table 13 verifies the

assumptions made here.

TABLE 13. SIMPLIFICATIONS

x/8

x/8

$/2 at $’s maximum
. 3926991 radians

sin(wx/8) = ,326834

For this case the angle « is held constant. Using all

,3 the above assumptions and approximations the Jacobians and
e
ooy their determinants are greatly reduced in complexity.
i
k}{ Tables 14 and 15 summarizes the development of the
SN
@ . o . .
L._ simplified Jacobian and determinant for the measurement
s
gﬂf equation containing the variable X. This Jacobian is chosen
’v".-'
P .. . . .
b because it is the least complicated of the two.
} &i
3
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o
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TABLE 14

SIMPLIFIED VERSION

Measurements:

ain? (a/2) '
sin(x)

0
A

97/ = arccot/ X-2R&S |
Z (R!a J

7 -aﬁ(' X3 - X , ’
X -

4RESX + 4R*3°S |

Jacobian:

J = - aR LB iU,
X* - 4RBSX + 4R*&'S 7K

Jo =2 F aR X
of X* - 4R®SX + 4R:&*S>

I =In/0 = aR / 2XB(X-2RBS) + B(4R?*J*S-X* )
~/-Jx{ “yva2 = |
X - 4RZSX + 4R&8°S. X* - 4RTS5X + 4R?3°S

(&)
I
~

[

=)/ = &R X(4R?B*S-X*) +4RSXE (X-2RE)
//2# XTI aRESX - 4R'@'S| X7 - 4RESK + 4R'E’S

68

.o B P
. - . o e Nt P RN . . . T ., . R . N . A B S IR .

. R R O S e Tt et e e T - R - At - .‘.‘.‘-..".'.. «t e

P WL S LUV SV S Y . WY I RV S TORT ST T W W ST S W IR § W ey PP SV, PP R . . | B ASBD DA,




L "
“/I-‘i

[ ]
b
",

v
r]

5
rox

ot e S
] ¥
L e

AR

v Ve

. , Tt

S lni;_
a's

~ ‘:: .

k%
2

P
il WY
PR B )

)

o~

-
]

- -
N )

. Vet el
LA N L
T E

- ,‘;;"’I ‘c") pd
RN

1] Fy '.n "
. N

AT
aty T
FLT

’
.
T

ot
1

TN '.;, ;

.)?}I

L’.L\\

N
J'

L o
' RZa
This holds for every X and ¥ where a = sin{(ax) and
b = 25/a = tan(a/2).
1J| = 0 if X3 - X =0 X, - &
X 3
ln X + X, = ln & + 3 In X =% - X = C
K
X = e~ = constant X =¢C 8%
$
|
Y Therefore :J; = 0 if X and ¥ are linearly dependent.
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TABLE 15

LINEAR DEPENDENCE

ETECTE VI S S A a*R: (X3 - 3%

X*> - 4R%¥SX + 4R*®’S

since X* - 4RTSX + 4R*'E*S = R*T’a’ 1 + / X_ - b




B e adatala s dor L gl a0t e et ahee s et Mg L SR Sk A e i i e AR e 4 Sl Gt ARt S YA MRS ~Rasmafiot e S A Saih Ol Aol Ry it o 400 & A B0 DAL B P SRR S AL AP L AL RN |

The second method involves the use of computer
simulation. The determinant (with the variable X as before)
is calculated using noc assumptions. The angles € and ~ are
incremented in small steps from O radians to ®/4 radians.
The angle a (that is actually constant) has been given five
different values for test purposes. The value of the
determinant approaches zero but never actually achieves
zero.

Note from table 15 that,

iJi = a*R? (X3 - X (4.4

X? - 4R®¥SX + 4R*@®°*S

If X2 = ¥X the determinant of the Jacobian is zero and
the system is not observable. From Table 15 it 18 apbparent
that the system is not observable if X and ¥ are linearly
dependent.

The various calculations and computer sgsimulations
indicate that the system initially developed in chapter
three (Table 5) is observable under general conditions.
According to the results of the computer simulation the

determinant never actually reached zero for the particular

b}u test values (50 test values) chosen. However there are

-4

R

AP certain conditions dependent upon the initial values % and
T‘} v  when the syatem is not obaervabie. Equation 4.1 defines
[

- these circumstances. Since the system is observable for

M l.l l‘- D}

most cases 1t is possible to design an adaptive observer.

This is the goal of Chapter 5.
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N V. OBSERVERS
'\::-\
o
k:) At this point in the satellite tracking project it is
:;y. necessary to approach the atate estimation problen. In
=
p?. general, a process can be characterized by the state and
o
> reasurement equations;
ot X(t) = AX(t) (5.1)
e
AN 2(t) CX((t> (5.2)
o )
o
ey where X(t) is an n-element column vector representing the
28!
:iﬁ states, Z2(t) is a g-element vector of measurements, A and C
P -
AN -
Qﬂ are nxn and gxn matrices respectively. The order of n :s
._-:.‘«
i greater than or equal to the order of q. It is desired to
}ﬁ obtain knowledge of the atatea of X(t). However, 1t ia Z(t)
b~
Qﬁf that is measurable and therefore known. For this reason it
Cj‘ is necessary to estimate X(t). The device for estimating
e
e the state X(t)> is the observer.
'l-'”’.-
}ﬁj A. LINEAR LUENBERGER OBSERVERS
-
iff A model of an open loop observer can be constructed as
N
e follows;
oo .
b Y(t) = AY(t) (5.3)
)
;; This model operates as does the process or plant. The
o estimation error is
e(t) = Y(t) - X(t) (5.4)
{f
S
o 71
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This is differentiated with respect to time(t).

?(t) - Xt

e(t) =
= AY(t) - AX(%)
= Ae(t) (5.9)
Therefore,
e(t) = e'" @(0) = 8(t)e(O) (5.6)

If the eigenvalues of A all have negative real parts
then e(t) approaches zero as t approaches infinity. The
error signal e(t) decays at a rate determined by the
location of the eigenvalues of A. The rate of response of
the process is also determined by the eigenvalues of A.

To make the decay rate independent of the dynamic
process, often a state model is ‘driven’ by an error signal.
In this case the observer is characterized by;

Y(t)> = AY(tY + G(2(T)> - CY(t)) (5.7)

and the error equation is
e(t) = Yt) - Xt
The matrix G is an nxq gain matrix which can be selected
to determine the rate at which y(t) approaches X(t). The
observer equation can be written as;

Y = AY(t) + GC(X(E£)-CY(E))

AY(t) + GCe(t) (5.8)

The driving term is GCe(t) and its purpose is to drive
the estimate Y towards X. The error equation is
differentiated with respect to time.

e(t)

Yty - Xt

e(t) = AY(t) +G(CX(t) - CX(t)) - AX(t)




P
P
rElsd

e e(t) = (A-GC)(Y(t)-X(t)) (5.9)
- e(t) 2 Fe(t) (5.10)
[ where F = a-GC

L ' et) = e e (5.11)
Y

Al As expected, the results depend on the initial

£§ conditions. The gain matrix G must be chosen to pliace the
zil eigenvalues of F at suitable locations. In designing an

o observer it is usual to place the eigenvalues of F where

-I}:

ot desired and then determine G.

S

e If the process has an input signal, u, then the

e appropriate equations are;

bk ] X(t) = AX(t) + BUC(L) (5.12)

v

- 2(t) = CX(t)

-
=0
.
[l

- The observer for this system is characterized by the

N following equation.

AS/EN :

> YC(t) = AY(£)+BUCL)+G(Z(£)-CY (L)) (S5.13)
F%‘ The error response is the same as in the above and :s
iﬁ given by equation 5.11. A block diagram of the observer 1s
'i}: shown in Figure S.1.

ﬁé When designing a linear or non-linear observer 1t 1is
e

:I' desirable that the observer error become small rapidly and
.

.
,}Q that the observer not be very responsive to noise, It isa

pe )

® .

Jé very difficult to meet both these goals since they seem to
<

e conflict. The observer must also be supplied with a set of
N
) ::\-

" initial conditions.
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If some of the states of a given system can be measured
there is no reason to estimate them. An observer of reduced
dimension can be designed to estimate only those states that
cannot be directly measured. For example, if there are n
states in a system and q of them can be measured, the
observer only requires (n-q)> states. Figure S.2 illustrates
the reduced order observer.

B. NON-LINEAR OBSERVER

For the design of the non-linear observer the technigues
developed in [Ref. 7] can be applied.

Declare two given n-dimensional vector valued functions
of time to be Y(t) and 8(t). Let these two functions be
related by H(8) as Y(t) = H(8). The vector H(8) 1s
considered known.

Assume that each ith row H(8) is differentiable at least
once on all parameters 8. Therefore an nxn Jacobian matrix

is defined as

J8) =JH(8) = [JQ‘J (8)} (S.14)
J 9
Jio (8) = JH () (5.15)

Also;

Y(t) = Hp(8) « JH(B) JB8 = J@rs(t)  (5.16)
S 8y
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Baasic Observer
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Reduced Order Observer
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Figure 5.3 is the general non-linear observer referred
to in {Ref. 71. The transpose of the Jacobian is represented
as JT}G). A string of parallel integrators are denoted asjk
and 8;(t) represents a solution of Y(t) = H(8) for any given
trajectory Yd(t). In regards to this figure there exists a
positive scalar s and a time T>0 such that for time t>T

(“es(t) - ed(t)“ € 8) if the following three conditions are
met.

1. K is positive definite

2. The magnitude of the determinant of the Jacobian is

bounded both from above and away from zero from
below for the particular trajectory Y, (t).

3. The magnitude of *d(t) ia bounded from above.

In addition, by increasing the minimum eigenvalue of K
the scalar s is made arbitrarily small.

An estimation error signal is defined as:

e(t) 8.(t) - 8 ,(t) (5.17)

Rearranging provides;

8;C(t) e(t) + 8 (&

Referring to Figure 5.3 the following relation is

géf stated;

3£: 8, = -KJ (8¢) (H(8.) - H(8,)) (5.18)
?} For notational convenience the following is defined;

L

N Z(e,8,) = H(e+8,>) - H(8,> = H(B,) - H(B.,) (5.19)

In this case sigma (Z) does not refer to a summation.

It is simply a variable.
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It follows from the above calculations that:
e=89 -8 =-KJ'(8,) Z(e,8,) - 8 (5.20)
The time-varying Lyapunov functions of the error signal
are defined as:
Vie,t) = %E (e,8,)E(e,8,) (5.21)
Since the determinant of the Jacobian is bounded
Z(e,as) = Q0 if e = O then it follows that V(e,t) > O if

@ = 0, Further calculations are summarized in Table 16.

The minimum eigenvalue of J(e+0;)J (e+8,) is denoted by
,)f which is always greater than zero. The minimum
eigenvalue of K is denoted by AK which is also greater than

zero so both eigenvalueg are positive. It follows that:

V < =M de|ZCe, 8,0 -8 T8 15, 0,) (S5.24)
Y, = Jca,) g (5.25)
N - 1
8y = Joy>' vy, (5.26)

Since Y and J(8 ) are both bounded J(éif‘ and éd are
also bounded for all t > O. Therefore Hédwt C, and
IRARTRY B EE
V<)) [ECe. 8,0 + CiC|ECe, 80
V < -Ga,a, |Ee,8,)|-C.Cs/y 25 g 27+C, Ca/2.} e (5.27)
C. DEVELOPMENT OF SATELLITE OBSERVER
For the de=sign of the satellite observer (the systenm
initially presented in Table S) the state 8 as deacribed
above now represents both X and ¥ as equation 5.28 shows:
6 = [X,| = Pﬂ (5.28)

|
X, Lel
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The results developed earlier in this chapter

. -,‘1.,1‘. KA %Y

.
el L " .
dets '_; s o

(part B) are now applied to the particular problem of the

" -
v -
P A }
o .

.

satellite tracker. The Jacobian of Table 7 is redefined in
o equation S.31.

It is intuitively obvious that;

\_ Y = H(X,Z,U) = H(8)

iéz The further development of both H(8) and 8 is presented
i% in table 17. The information in Table 17 leads to the

52; design of an observer for the satellite. This design is

Eéz depicted in Figure 5.3. Figure 5.4 showa the model used to
,’” check observer results. Both the observer and model are

i;; simulated using the FORTRAN programming language. The

é?k results are discussed in the next chapter.
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CALCULATIONS FOR OBSERVER DESIGN
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%: VI. SIMULATION RESULTS

-

I~

] The basic observer designed in Chapter S is simulated to
'

‘ﬁ: prove authenticity. Recall that the original state and

Q measurement equations were developed in Chapter 3. Due to
b the satellite’s limited GSW, aeveral parameters (including
;; anglea & and ) are confined in their maximum attainable
_:: valuea. Therefore, these parameters were kept within

o specific ranges. The angle alpha (a) is taken to be a

X
5

constant 30°. This value is selected for convenience.

l ‘.‘l;.‘ Al

et

The angular velocity of the target (:..) is chosen to be

L

0.000S5 rad/sec. This sets the target speed at about

PR

»

2 mi/aec. The angular velocity ¢...) of the satellite is
chosen to be 0.00045 rad.sec which yvields a speed of about

1.8 mi/sec. These are arbitrary but not unrealistic values.

PR AR
.', AR

A. THE BASIC CONTINUQUS OBSERVER

y Y e N
P R

Figure 6.1 depicts the basic simulation block diagram.

The initial conditions 8¢ and X are 0.2 radians and 10QOkn

R LS

v

ot}

(621.5 mi) respectively. These values are arbitrary but

.1.‘.&)&'.()

within the acceptable range. Recall that X = R(&-v).

v
.

i
- X

Figure 6.2 is a block diagram depicting the basic
observer design that is simulated., Note that Figqure 6.2 is

virtually identical to Figure 5.5.
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'j.
§
0
h .t.‘
ALY
N
gﬁ‘ The equations representing the various elements 1in
N Figure 6.2 were initially developed in Chapters 3,4 and S.
.
o
?: Table 18 summarizes these equations.
Ki The gain matrix (as developed in Table 17) is chosen to
v be a diagonal matrix of the form:
M
p" < r
" K= "k, 0!
= o [
R !
WOy 0k
[N o 1N ]
The elements k and k both must be greater than zero.
W
)
‘ Al . . I3 3
:‘ A diagonal matrix was chosen because it is fairly easy to
.
‘ba work with and it allows the error changes to be monitored.
[
! There are two ways to describe the observer to be
?i simulated. It can be described in the continuous domain or
e :
oo in the discrete domain.
The observer was initially represented as a continuous
“‘.
‘f: model. A forth-order Runge-Kutta method is used for
:é integration. The continuous model was used in order to
eliminate any possible errors that could be introduced as a
o~
.b result of discretization. However, simulations for both
.
1ﬂ: versions produce no real differences.
oy
@ B. THE DISCRETE OBSERVER
{L With the advent of micro-computers a discrete observer
jk acting as a one-step predictor is a more realistic choice.
uﬁ In this model the foreward difference approximation is
;;Z employed.
-
,${ The basic definition is:
Y .
i Xt > = X(t.) + st X(t)
N '
e
.
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Gt
’.

L P P P g P N IR SR TR T T Sl S gl oy I - SRt AT
'.‘F..F.-::.- S ,\ :“ \-‘4" .'(":".F""-.“[.'- S e . * A .J'- <. AT p \”19‘ 5 '.'-1 J.\V.‘b \‘\v'\ %t

N’E"‘ :‘ :“:‘)? 'kt\-:~'




LA R G A e " A S g ~aa oLt L Nl S A A0 Al Sad N T T P Ry W e prp——— 'Lj

ENENDNS

-
&
g

TABLE 18 OBSERVER EQUATIONS

-

15 e

3
R
iy
\
5

-
.
3

o

[
S
«'s
* 4
i

B

v
g
2 86
A |

R L A I Yl T W L T S St U Sl TR SR S S
PRy "n:"'{‘*i S n\‘a\--"'." L e e e
N0 W . A% . W T V. P DR T N WL B



o
b
-_' &
N
1R
e
e 1. Full Non-Linear Observer
N First the original, highly non-linear observer
SHY
e ‘ (figure S.5) was simulated uasing a FORTRAN program on the
AIAY
AN
o IBM 370 ayastem. All attempta to find valuea of gains and
v integration step for which observed states converge were
)
R
i:§ unsuccessful. Typically the observer enters steady state
SN
;ﬁj with very small errors e and e,; however, the estimated
5
states were far from actual values. It is possible that
5
:q? this behavior is the consequence of the sinusoidal periodic
[} "-)).: .
N functions (sin(x/2R> and sin(®&/2)) in’? and . Recall fron
N ' i
A
¥ Chapter 4 that this observer is not shown to be observable
ﬁ{ in the strict sense. Univalence may not exist due to the
S -
N reiterative nature of the sine function. 1In order to avoid
<
_ periodicity an approximation of a non-linear observer is
R "
s considered.
N
‘:h The simplified observer has the same form as the
J full observer (see Table 18), but the measurement equations
e
%; and the corresponding Jacobian are approximated as developed
Seit
o in Chapter 4 (and repeated in Table 19).
P
i The simplified observer simulated was being very
i3 ‘.’-:
fi- insensitive to changes in X and 3. The observer stabilized
\Tn ~ ~
xﬁ with a small error (e, and e;) while X and & remained
2"
q!? . significantly different from X and ¥ respectively. The
e
:? exact reason for this behavior is unknown. However it is
B
:Qﬁ ' theorized that the relative smoothness of the arccotangent
;b l
= curve (arccotff) is responsible for this behavior.
>0
5
3
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TABLE 19 SIMPLIFIED OBSERVER

-

Measurement equations:

set s = sin!(a/22) and a = sin(x)

h (X,8) = arccot ; x - 2R&S |
. R3a '
h,(X,3) = X3 - 3X

-aR, _ .
( X? - 4R3SX + 4R?*¥*S

Jacobian:

SETEEE M AS S ___-aR 3
X?* - 4R3®SX + 4R2%*’S
J . =/ $ = A”__A___”Mw“aB" o X
X?* - 4R3ISX + 4R*P*S
J -t = ,//;/‘\ X = aRr i »
X? - 4R3SX + 4R?3%°*S
2XB(X-2RES) + B(AR'E!S-X')
X* - 4R3¥SX + 4R*3*S
J =.%y/i§ = aR - .

X* - 4R3SX + 4R23°'S

X(4R*&*S-X?)> + 4ESXE(X-2R®>

TTX® - 4R3SX + 4R’3°*S




Car
&
o *l
N
-
A ’ In order to circumvent this problem the measurement
S
. signal is redefined.
.'-
[’ 2. Redefined Non-Linear Model
o
# ._"l
o A new measurement variable is defined as:
=
! ' o-C(t) = x(e)/8(L) = Rsin(a)(cot(y(t)) + tan(a/2))
" {
e -
e If the value of « is known and //(t) is measured:
;ﬁf then u(t) can be calculated. Taking inte account the
assumed range for $¥(t) and X(t) and the values for
ﬂ} parameters R and «, the expression X/(REsin(x))-tan(x/2)
o
‘j{ never achieves a very large value. Therefore (t) is
‘L bounded away from zero. This implies that cotan(’ (t)) has a
i~ bounded value.
o The derivative of ...(t) ia:
4 ¢« (t) = Rsindad (- (t)/sin? (/ (£)))
o ' y
‘3{ where "/(t) and ° (t) are measured values and  (t) is
. : ’ i
i
LG evaluated.
N
O The redefined non-linear model and observer are
;3: presented in Figure 6.3. It is noted that this observer has
‘}: the same form as the observer given on the block diagram 1in
b Figure 6.2. Observer equations are shown in Table 20.
1.').~
}: All attempts to find the power K,, K. and ..t (the
N
s time increment) that would force the states to converge
?' failed. A satisfactory theoretical explanation for this
;,_\
~i behavior was not established. However, one possikle
e,
f: explanation is that ¢ and e are extremely sensitive to
%]
2
o~
o
..0
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TABLE 20

MEASUREMENT EQUATIONS - REDEFINED NON-LINEAR MODEL

Measurement equations:

ho (X, = f<(X,8) = X
z
ho(X,8) = /«(X,® = X& - 3X = 1.X - &X
& N 3

Jacobian:

Jo = . h.= 1 3 J,. = 'h =-X_ = -1X
X 3 '3 3> T 3

’LD__L = -10 3
o X 5

o
3
[}

J = s h_ = X(Tr* - 2B(XB-BX) = -1 | XB + 23X

- @ ] -

= 1 /28X - X|

e

Observability;

Ji = J,J, -J.J., =1 28X - X -1 BX =1 33X - X
L - 2 / 3 & 3 3
‘Jt = 0 if X - X = O X =8,
% “x &

;Note that these conditions were defined previously.
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change in states vhich results in an extremely slow

convergence with a highly oscillatory transient response.
3. Redefinition of State Variables

Analysis of the model with redefined measurements
reveals that the form of the equations allow redefinition of
state variables. This may reduce the sensitivity of the
model.

A new state vector [U,VJT-is defined as:

U = X/ and V = 1/8%
Table 21 illustrates further development.

The block diagram in figure 6.4 shows the discrete
observer. A simulation of the discre?e observer was run
with ¢% = 0.000S and ¢4 =0.00045. Several different gains
were used to test convergence. Convergence is obtained for
the following ranges:

O < K,4t ¢ 2 and O « KzAt/;J;_; < 2

Arbitrary initial values for J and G were employed.
It seemed natural to assume Go = 0, X = O and v = 1 (2 =1
ia within the allowable value for %).

To examine the observer’s ability to track varying
angular speeds it is assumed that (L, and «; are sine waves.

"
“Wtr = A 8in(Dt)

s

A
B sin(Dt)

Different amplitudes and periods are tested and
successful tracking is achieved. Appendix C contains the

resulting computer graphs.
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TABLE 21

OBSERVABILITY CONDITIONS AND DISCRETIZED OBSERVER

Measurement eguations:

AU,V = h (ULYY = U

1

(U,Vvy = h, U,V vV - &

Jacobian:
Jy, = 2JL. =1 ; J. ==2+h =0
JuU Y
J:v =4h. = -8 ; J,. = -h = X - 3U
LU 5V
Observability conditions are the same:
EJE = X -3U # O X -2 #0 X =
A ; /

Continuous observer:

.~

U

"
A
LN
(1]
+
e
[
o

~

v

f
=x
(3
n

+
=
[
o

The discretized observer becomes:

e, =1 (U, V) - h, (U ,V ) =+, - U,

1Kk . ™~ 2

e, =i (U ,V,) - h,(U,,Vv,>) = +. -V

3

\

+ K,C.te‘, * K‘t - J'.(Uy:_.V.)e.,_

’
i a8

T
]

A -

Vo, = V., + K.atJ.. (U ,V e,

& .42

".l
vl €

a -‘l"l‘. .
?hce‘w
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a
»

2
rd

s
b 2 4y b
L a4 e e A

>
2,

N
v As expected the amplitude of the sine wave
v
o representing state (A/D;B/D) which can be tracked is
xﬂ
ifb inversely related to the period of oscillation.
ay
._‘\
:xﬁ 4. Model Decoupling
o,
- Analysis of the error equations provide;
. . A ~
e. = /AU,V) - h(U,Vv) = U-U
e, = LU,V) - h.CU,V) = V(X-U)-V(X-3U)
- = X(V-V)-3UV-UV)
HE The block diagram in Figure 6.4 indicates the
ffﬂ possibility of decoupling the observer into two first order

&

X

models by letting J.. equal zero (J.. is already zero).

i
vx
a8

rﬁé - Figure 6.5 shows a block diagram of the discrete
iﬁ subsystem. The discrete system of Figure 6.6 is c=2rtainly
iﬁf stable if it’s eigenvalue lies within the unit circle.

:.; l1-al ¢ 1> 0 < a <20 <K at <2

‘?3 Under this condition the system has a steady-atate

£
22 )
N

vhe
A LR
v et

error of zero for a constant input u.

Pl
' e

PR

Hence the syatem acts as positioning servo-mechan:isnp

»
.

:é; and is capable of tracking the relatively slow varying
E;' inputs with very small errors.
P S. Subsystem Two
AR
:;: Assuming that subaystem 1 is tracking u ( ulty =
o,
YR u(t)) the error e .  can be approximated as:
.:A , Do N
o - -
23. e.~ (X U (V v
>
Y55 The observer is reduced to the gradient algorithr
A where the gradient is:
AT
2N
-:I

“
<,

5
oy
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s

\: ::t- - LN

ved Jdees) =X -30 =7

¥ HV-)
i:: Figure 6.7 illustrates the observer. This result is
1y

:::: also in accordance with the method proposed in [Ref. 61].
N '.‘! . - R

v 0 Defining Y= (X~-3U)V as a new measurement the

Kl ™

-ﬂ'-' » A

*qy corresponding function h is h=(X-3U>V. The Jacobian is
i":‘)-‘ C A

o J =Jdi v X-au.

'1,,,

In order to simplify the stability analysis the

L ™ s

0

4:3 Jacobian, J, is replaced with the signum function,

)

2

signum(J). This is sufficient to guarantee the negative

S

-
[§

(; feedback of subsystem 2. Subsystem 2 is analogous to

iﬂ subsystem 1 and will be stable if O < K, 4t < 2.

-:‘- -
.}} Consequently this system also performs as positioning servo-

mechanism and will track relatively slow varying inputs V(t)

1oy

ﬁ; with very small error.

C? The presented analysis leads to a definition of the
;) decoupled observer. This observer is depicted in Table 22.
»- >

W:g Appendix D contains the computer simulation results.

AL+

»=p

ﬁg Figure 6.8 is essentially the same as Figure 6.4

b il )

& - with J;e = 0 and J,; = signum(J,2 ). Therefore it is

,hk: possible to consider this algorithm a simplification of the
e

N

{;{ algorithm developed in (Ref. 7]. However, it should be

>

1 pointed out that the decoupled observer can be derived

bds 2

g
Sy directly through analysis of the two linear subsystems

W
‘Gt !
‘jﬁ presented above.
L
o
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N TABLE 22

?’
o %

DISCRETIZATION

St s ~
| Yoo T
N Axl“-f\."
~~

b
I'd
0
"
~
&
]
s
0
1
=2
”~
(=4
N

I
-

- h.(U,W)

‘.’
. &
Xy
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1
f‘# In the decoupled model it is easier to control gains
f.: since the J., element does not affect stability. It is
:2 noted that slightly more oscillatory behavior is present
:zﬁ at the beginning of the simulation. This is not unusual for
?f - gradient type algorithms.
~33 Satisfactory results for the product Kit = 0.1 are
ézﬁ expected if the observer is analyzed from the sampling
tf theorem point of view. This presupposes that both
:?ﬁ continuous subsystems posses only one time constant ¢ = 1/K.
‘Eé The sampling theoren requires that t < (/2 and atK < 0.5.
tr. Experience has shown that the best results for the
l}; one-step integration are obtained if the integration step
{; (sampling time) is ten times less that the smaller time
| w constant in the system. This means at = 0.1(1/K) and
;js stK ~ 0.1. |
iét The sampling theorem is violated if A4tK=1l. As a

- consequence the observer requires much more time to extract
;js sufficient information from the measurement and to start
-
Fﬁ state tracking. The simulation results demonstrate that
;? when the product 4tK equals unity convergence starts after
'ﬁg fifty seconds. This is approximately ten times slower from
: S previous experiments where the sampling theorenm is
:!; ; satisfied.
;Q In the case of 4tK = 0.01 the system pole is very
;; close to the unit circle. Therefore, convergence is
o relatively slow.
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As demonstrated by the various computer generated
graphs, the simulation results for this system are
satisfactory. Therefore the selected coordinate system ia

proven acceptable.
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A

I; VI. SIMULATION RESULTS

1.}: The basic observer designed in Chapter 5 is simulated to
L

f{ prove authenticity. Recall that the original state and

'Ez measurement equationas were developed in Chapter 3. Due to
JE: the aatellite’a limited GSW, several parametersa (including
o anglea 2 and ) are confined in their maximum attainable
33% valuea. Therefore, these parametera were kept within

S& specific ranges. The angle alpha (a) is taken to be a

t& conatant 30°. This value is selected for convenience.

séﬁ %he angular velocity of the target (i«.) is chosen to be
&:i V 0.000S5 rad/sec. This sets the target speed at about

:ﬁ 2 mi/sec. The angular velocity (w:) of the satellite is
‘Eé chosen to be 0.00045 rad.sec which yields a speed of about
f?: 1.8 mi/sec. These are arbitrary but not unrealistic values.
:;: A, THE BASIC CONTINUGUS OBSERVER

ié& Figure 6.1 depicts the basic simulation block diagranm.
?fi The initial conditionas # and X are 0.2 radians and 1000km
té: (621.5 mi) respectively. These values are arbitrary but

o

:55 within the acceptable range. Racall that X = R(Z-v).

';f Figure 6.2 is a block diagram depicting the basic

gﬁ observer design that is simulated. Note that Figure 6.2 is
;E: virtually identical to Figure S5.S.

7
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Figure 6.2 Observer BRlaock Diagram

34




A

[

RNEL

e

YA

oo

AL a..
T A

&':.

The equations representing the various elements in

Figure 6.2 were initially developad in Chapters 3,4 and 5.
Table 18 summarizes these aquations.

The gain matrix (as developed in Table 17) is chosen to
be a diagonal matrix of the form:

K= [k o

o kK,

The elements k and k both must be greater than zero.
A diagonal matrix was chosen because it is fairly easy to
work with and it allows the error changes to be monitored.

There are two ways to describe the observer to be
simulated. It can be described in the continuous domain or
in the diacrete domain. .

The observer was initially represented as a continuous
model. A forth-order Runge-Kutta method is used for
integration. The continuous model was used in order to
eliminate any possible errors that could be introduced as a
result of discretization. However, simulations for both
versiona produce no real differences.

B. THE DISCRETE OBSERVER

With the advent of micro-computers a discrete observer
acting as a one-step predictor is a more realistic choice.
In this model the foreward difference approximation is
employed.

The basic definition is;

XCt, > = X(t) +at X(to)
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TABLE 18 OBSERVER EQUATIONS

CB3ERVER?®

e'=?’/& e,{:;?"iz

MEASUEEMENT g ¢

7 = gretcl sn(X2R)
4 Sin@)sinle@z)

- tCL'J\('JVg,S

/
hcs(-za) ,.r( / us(‘é /745‘
SN C&JO\ 2(%)

'77- = _/ 3
/ \ + SM(X/Q_RJ_ ~Tauni#2 ) f
S0 (=S (22 L

Do \
h‘;ocrccot S\\\'\./K/ZR\) —-t-’.\'?l (_x/z}\
______—_’____._—-——- i i
Sini=) s 2z "/

)5«\!

52 /X dt-= J(K‘[\)“LZ +-J“(,]) 3 ?:J?Jt’}((hbu@y J.z@,)c

, o LA
’ n > PR
/ __L D /X \ {A)-.—‘-S.I{: ;("(_;_

h, =

S C)Z/,\}

=

A

( + S.ﬁz—)'%/g:p)
ALY
SintAsindZ/z2)

, A :
~Tan (4/z>) ( 3.0
7/
JTAcesiAv ]
- -7 T L -J’,w - ‘~\ N NED EAREE Y
I SIES ooomE PERiec
i

iING O LWRPTER 4,
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el 1. Full Non-Linear Observer

A

~x First the original, highly non-linear observer
:i? (figure 5.5) was simulated using a FORTRAN program on the
R

. -“'.-

:}x IBM 370 ayatem. All attemptas to find valuea of gaina and
' integration step for which observed states converge were
)

iﬁ unsuccessful. Typically the observer enters steady state
W

}3 with very small errors e, and e,; however, the estimated

states were far from actual values. It is possible that

R

this behavior is the consequence of the sinusoidal periodic

functions (sin(x/2R) and sin(&/2)) in ? and‘?. Recall from

Chapter 4 that this observer is not shown to be observable

~:ahr}fz

PR

.ri in the strict sense. Univalence may not exist due to the
:;& reiterative nature of the sine function. In order to avoid
‘”_‘ periodicity an approximation of a non-linear observer is
,Sﬁ considered.

A

,2; The simplified observer has the same form as the
;?L full observer (see Table 18), but the measurement equations
'g? and the corresponding Jacobian are approximated as developed
jﬁ% in Chapter 4 (and repeated in Table 19).

ﬁ;; The simplified observer simulated was being very
i;ﬁ insensitive to changes in X and 8. The observer stabilized
iéﬁ with a small error (e, and e,) while i and ; remained

,?f significantly different from X and ¥ respectively. The

.13 exact reason for this behavior is unknown. However it is
';a theorized that the relative smoocthness of the arccotangent
‘ﬂ— curve (arccot77) is responsible for this behavior.
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0% TABLE 19 SIMPLIFIED OBSERVER

v Y Measurement equations:

*,
DO ol
P ———

‘}j set s = sin?*(a/2) and a = sin(x) ’

S h.(X,8) = arccot (x - 2R§s\
R¥a J

e h,(X,® = -aR( X3 - 3X y |
X" - 4RESK + 4R'E’S |

Pidt}
l"l

Jacobian:

.
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A

I =~)7/Jx -aR 3

X?* - 4R3SX + 4R?&?*S

-
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0a % ey
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a,

..
)
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Joo =5Ysx

aR »
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In order to circumvent this problem the measurement
signal is redefined.
2. Redefined Non-Linear Model
A new measurement variable is defined as:
AeCt) = x(2)/B(L) = Rsin(a)(cot(?(t)) + tan(a/2))

If the value of a is known and %kt) is measured:;
then u(t) can be calculated. Taking into account the
assumed range for $¥(t) and X(t) and the values for
parameters R and «, the expression X/ (R¥sin(x))-tan(a/2>
never achieves a very large value. Therefore{’(t) is
bounded away from zero. This implies that cotan(f(t)) has a
bounded value.

The derivative of/ﬁ4t) ia:

,Ll(t) = Rsin(a)(-7(t)/sin‘(7(t)))
where 77(t) and'?kt) are measured values and c((t) is
evaluated.

The redefined non-linear model and observer are
presented in Figure 6.3. It is noted that this observer has
the same form as the observer given on the block diagram in
Figure 6.2. Observer equations are shown in Table 20.

All attempts to find the power K,, K. and 4t (the
time increment) that would force the states to converge
failed. A satisfactory theoretical explanation for this
behavior was not established. However, one possible

explanation is that e and e are extremely sensitive to
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TABLE 20

MEASUREMENT EQUATIONS - REDEFINED NON-LINEAR MODEL

Measurement equations:

h(X,3 = M(X,&) = X_
]

h(X,® = JLUX,8) = X& - 3K =;%\x - 3X
3 3 z

~

Jacobian:

Juw = h. = 1 J, = Jh =-X = -1
S X 3 JB L ]

-e

X
]

Jzy = Q_b__z = —1(§,’
JX

3., = 2h, = XCB)* - 2B(XT-FK)~ = -1 (X8 + 28X
3% ] g 33

Observability;

o . ' /
"Jg = J, Joy = Jin Jay =1 /28X - X\ - 1 BX = _1,/§_}_(_ - X
Bl 3 ) z: 'z sl F

Note that these conditions were defined previously.
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change in states which results in an extremely slow

convergence with a highly oscillatory transient response.

A5

: 3. Redefinition of State Variables
r
‘ +
5? Analysis of the model with redefined measurements
h ]
ér, reveals that the form of the equations allow redefinition of
il
‘% state variables. This may reduce the sensitivity of the
Y
L: model.
T, .
o A new state vector (U,V] is defined as:
ol U =X/% and V = 1/3
\., .
.ﬁ Table 21 illustrates further development.
, The block diagram in figure 6.4 shows the discrete
W o
ﬁ- observer. A simulation of the discrete observer was run
o -
<L with &k = 0.0005 and 44 =0.00045. Several different gains
o)
-~ were used to test convergence. Convergence is obtained for
:i the following ranges:
~ 0 ¢ K, 4t ¢ 2 and O < K,at/|Jz2| ¢ 2
- A ’”~
:) Arbitrary initial values for U and V were employed.
L\ ": ~ a
;2- It seemed natural to assume U, = 0, X = 0 and V =1 (& =1
-~
'i; is within the allowable value for &).
)
— To examine the observer’s ability to track varying
\i
>
fﬂ angular speeds it is assumed thatlk%andlkkare sine waves.
n
%: &t = A 8in(Dt)
‘ ad
ot s = B sin(Dt)
{? Different amplitudes and periods are tested and
;i successful tracking is achieved. Appendix C contains the
e resulting computer graphs.
“
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TABLE 21

OBSERVABILITY CONDITIONS AND DISCRETIZED OBSERVER

Measurement equations:
AU,V = h, (U,V) = U

ALCU, V) h, (U,Vv) = V(X - g

Jacobian:

J, =<h, =1 ; J, =9h, =0

J:v =3hy = -8V 3  J,, =Jh, = X - 3U

Observability conditions are the sare:

|J] =X -3 £ 0 X -FKFO XFET
Z Rz
Continuous observer:
~
U=KJ, e + K/ J, o,

V=KJ,e, +K.J.e,

The discretized observer becomes:

A

Voo = - U

W = JulUe ,V, ) = h, (Ug,

o\

@=L U,V ) = h (U, V) = Ao - V(X - & U

”~ ~

EN A
Uﬁfl = U,( + K|Ate|k’ K,at = JZI(UKDV()e—L

-\ - Y ~
vk'l = v& hd K)_AtJZ;(UK.vK)eIK-
!
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As expected the amplitude of the sine wave
representing state (A/D:;B/D) which can be tracked is
inversely related to the period of oscillation.

4. Model Decoupling

Analysis of the error equations provide;

e, = MU,V - hel, V) = U-U

. “ A .. A

e, = L(U,V) - h.(U,V) = V(X-8U)-VX-3U)

= X(V-¥)-B(UV-UV)

The block diagram in Figure 6.4 indicates the
possibility of decoupling the observer into two first order
models by letting J., equal zero (J. is already zero).

- Figure 6.5 shows a block diagram of the discrete
subsystem. The discrete system of Figure 6.6 is certainly
stable if it’s eigenvalue lies within the unit circle.

|1-a] < 1> 0 < a <230 < K at <2

Under this condition the syatem has a ateady-state
error of zero for a constant input u.

Hence the syatem acta as positioning servo-mechanianm
and is capable of tracking the relatively slow varying
inputs with very small errors.

S. Subsystem Two

Assuming that subaystem 1 is tracking u ¢ a<t) =
u(t)) the error e . can be approximated as:

e," (* - éﬁB(V - G)
The observer is reduced to the gradient algorithm

where the gradient is:
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i

o

N Jee.) =X - 30 = J

o S(V-0>

ﬁﬁf Figure 6.7 illustrates the observer. This result is
'ié also in accordance with the method proposed in [Ref. 6].

|ﬁ§ Defining V= <i-§63v as a new measurement the
:;% corresponding function h is h=(i-§6)v. The Jacobian is

"? 3 = SiMve x-80.

o In order to .simplify the stability analysis the
L$) Jacobian, J, is replaced with the signum function,
;{%E signum(J>. This is sufficient to guarantee the negative
t;% feedback of subsystem 2. Subsystem 2 is analogous to

iﬁi subsystem 1 and will be stable if O < K. 4t < 2,
E;b; Consééuently this system also performs as positioning servo-
- mechanism and will track relatively slow varying inputs V(i)
ﬂifj with very small error.

i?;: The presented analysis leads to a definition of the
i:;l decoupled observer. This observer is depicted in Table 22.
:bﬁ Appendix D contains the computer simulation results.
o
'Ei Figure 6.8 is essentially the same as Figure 6.4
- with J: = O and J,.; = signum(J;z2>. Therefore it is
iﬁg possible to consider this algorithm a simplification of the
:Egz algorithm developed in (Ref. 7]. However, it should be

T

pointed out that the decoupled observer can be derived
directly through analysis of the two linear subsystems

A presented above.
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TABLE 22

DISCRETIZATION

1
N AN
- e =/4l-U= - h WUW ‘
4% E
~. ~ - . o~ A~
- @ = - V(X - TU) = L= h, U,V
L U= Ke,

I~
-j vV = KZSygn(J,-_z )e:

After discretization this becomes
‘ :: s~ o~

. -
- U, = U, * K, ate,

+ K, at sygn(J,;)e,

-
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In the decoupled model it is easier to control gains
since the J., element does not affect stability. It is
noted that slightly more oscillatory behavior is present
at the beginning of the simulation. This is not unusual for
gradient type algorithms.

Satisfactory results for the product Kzt = 0.1 are
expected if the observer is analyzed from the sampling
theorem point of view. This preéupposes that both
continuous subsystems posses only one time constant ¢'= 1/K.
The sampling theorem requires that t <« (/2 and 4tK < 0.S.

Experience has shown that the best results for the
one-step integration are obtained if the integration step
(sampling time) is ten times less tha£ the smaller time
constant in the system. This means 4t =« 0.1(1/K) and
itK ~» 0.1.

The sampling theorem is violated if gtK=1. As a
consequence the observer requires much more time to extract
sufficient information from the measurement and to start
state tracking. The simulation results demonstrate that
when the product 4tK equals unity convergence starts after
fifty seconds. This is approximately ten times slower from
previous experiments where the sampling theorem is
satisfied.

In the case of 4tK = 0.01 the system pole is very
close to the unit circle. Therefore, convergence is

relatively slow.
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As demonstrated by the various computer generated
Therefore the selected coordinate asystem is

the simulation results for this asystem are
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VII. CONCLUSIONS AND RECOMMENDATIONS
L] NI
Lo
ﬁ ™ The objective of this thesis is twofold. The first part
Bk
H) of the thesis involves finding a suitable coordinate gystem
g
;;: in which to eatabliash a asatellite tracking model. The
e
‘;C{ second part of the thesis uses this coordinate system <o
obtain an observability analysis and design an observer.
ot
’?j This latter portion is the main thrust of the thesis.
o
oy The satellite model is based on the coordinate systen
& developed in chapter three. The model 1s simplified yet not
S
2
S5t unrealiatic. The main limiting asaumption confine=z noth the
AN .
l\.
ﬂ%; satellite and target to a cConatant apeed and headinT. An
unchanging direction 18 important due to the desire tc
;;f maintain a conatant angle «. These restrictionse 1mposed
;“. on the satellite are explained a detail in chapter three.
J Satellites and targets (airc .ft) would normaliy %travei a
2
;:ﬁ great circle path which raquirea a conetant bearina.
e
:}: Therefore, the asaumption 1a valid. This basic premias
P
\ ’--I
L resulted in the spherical triangle that forme the baz=ia of
-,‘-
- the system presented i1n Table S. Once the basic model
e
-).'“-
w{f became established an observability analysia was
‘.
;j accomplished in chapter four. The basic observability
o f‘: N
7?{ theories developed in (Ref. 6] (for mechanical springs) has
:ik been successfully applied to satellite observability. The
. system proved to be observable in the wide saense.
i
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Further astudies in the area of satellite tracking and

o Rl e h 2

o e

i)
° observability are highly recommended. A more realistic

ﬁ satellite model could be devised in thease atudiea. To

VL improve the accuracy of the satellite motion equations the

. earth must no longer be assumed spherical and the

; satellite’a orbit must no longer be confined to simple

- circular orbit. This leada to a different coordinate aysztem
_ by necessity. Relative coordinate systems should be

H explored in more detail. Appendix B discusses this brieflv.
A A possible approach involves using the Euler equations of

i motion. A target position with resp=ct to a satellite vrine
? axis -could be transformed via pitch, yaw and roli o a

i satellite normal axis. Enhanced satellite tracking studies
. should include a target that is not confined to a constant
Li heading. The target should be allowed to alter course to

- further complicate the coordinate system and ~bserver mode..
1

C Both the satellite and target should be subject to randomnm

s

{ disturbances. This leads to the development of stochast:ic
-.J

-é models. References 6 through 8 are highly recommenged =-o

W)

' anyone pursuing this course of research.

o/

Z? This thesis has successfully developed a model for

}; satellite tracking. The system has been determined to be

v

! observable and an observer has been designed. The observer
;ﬂ model has been successfully simulated.
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APPENDIX A

s
l:‘
*

o x

5
o &

ELEMENTS OF ORBIT

AP Ay

‘
vy

-,
L
e
.-.
L.

k3
7.

7

Satellites travel in elliptical orbits. Figure A.l
depicts a basic ellipse. The distances a,b and ¢ are

related by equation A.1l.

ct* = a? - pb? (A. 1)
In this equation: a = semi-major axis
b = semi-minor axis
c = distance between foci

Eccentricity is also a parameter often used in
connection with elliptical orbits. Eccentricity, e, 1s a
mneassure of the elongation of the ellipse. Egquations A.2
and A.3 relate eccentricity to previously defined

parametera.

1 - (b/a> (A.2

e?

c = ae (A.3?
Other elements include apogee and perogee. Apodgdee 1s

that point on the orbital ellipse where the satellite is

furthest from the earth (focal point)>. The perigee is that

point where the satellite passes closest to the earth.

These new parameters are related to a and e by equations A.4

and A.5S.

a(l+e) (A.4)

)
Q
"

apogee distance

"

o
v
]

perogee distance a(l-e) (A.S)
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oo Any two of the above gix parameters can define an

W

™ ellipse. For the special case of a circle;y e = 0, d =d .,
c = 0 and a = b.

; x} L&, ‘_""_Lr

To describe satellite motion more information is needed.

The inclination angle, i°, is the angle of intersection

‘ﬁ between the orbital plane and the earth’s equatorial plane.
b\ o8
» '.
w} Figure A.2 illustrates. Information on the period of
W
revolution of the satellite is needed as well as knowledge
¥ &‘:
& of the precise time that the satellite passes it’s apogee or
B
LQ perogee,
e
[ | Some references use information on the ascending node to
{a determine satellite paths and positions. Figures A.3 and
o A.4 illustrate the relationships. [(Ref. 5] uses the
parameters 1n table A.l as the necessary elements of orbit.
ns, W
o
I
- TABLE A.1
A
b
-k T - period (in minutes) w - argument of perogee
d
2 ) . .
;:a i - angle of inclination e - eccentricaity
N
) -"_r E
}: ,%; SSP longitude at perogee t - time at perogee
:2 The elements listed in table A.l1 completely describe the
f; theory of satellite motion. Perturbations are i1gnored. In
ff practice the motion of a satellite is very nearly descr:bed
I
Yo by these elements of orbit.
‘ot
i .
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APPENDIX B

RELATIVE MOTION

The general theory of relative motion is developed using
simple frames of reference. An object in frame A moves with
reapect to that frame. Frame A moves with respect to the
fixed frame B. These framea are conasidered to be coordinate
systems or sets of refergnce axes. Figure B.l depicts an
object in the prime system. The X-Y axes represent the
fixed system. In figure B.2 the prime system moves with
respect to the fixed asystem a distance d. The object in the
prime system moves a distance d’ within its system.
Therefore the object moves a distance d .,_ = d ¢+ d’ with a
velocity Vi = V ¢+ V2,

Further studies concerned with satellite tracking should
involve relative motion. The fixed coordinate sytem is a
three dimensional system with itas origin at the center of
the earth. The center of mass of the satellite is the
origin for the relative or prime coordinate system. The
prime system orbits the fixed system.

The target is detected by the satellite and its motion
is therefore meassured with respect to the satellite’s prime

coordinate system. These relative coordinates can be
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;j APPENDIX C

2;% ORIGINAL MODEL SIMULATION RESULTS

il

:ﬂi This appendix contains the simulation for the original

Eé model. These graphs depict the states X and &. Figure 6.4
gsé presents the block diagram of the model simulated. The

] simulations are run for 10 seconds and 500 seconds. This
iéz insures that a variety of suitable graphs are available for
a§§ analysis. In order to accompany test observer behavior

J; several different gains and time increments are used in the

. .

1&% simu{ations. Specific combinations of gain and time

tt% increment produce excellent results (as explained in

~an chapter 6).

Sl

ifé The observer model’s ability to track a constant is

;%? recorded on eight graphs. The first two graphs (pages 112-
Q{ 113) depict state X for constant angqular velocities and

A

‘Ei: different gain values. The next two graphs (pages 114-113)
> .
::ﬁg depict state $ for the same gains mentioned above. A gain
:E;; (k) of ten is clearly beneficial for both X and &%, since
i;.', then stk = 0.1.

:ﬁ&i The following two graphs (pages 116-117) show two

.’L; different time increments for state X, constant gain and .
f%; constant angular velocities. The graphs on pages 118 and
-ig 119 display the same two time increments for state #. As
e
N
=
P N2
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expected the smaller of the two time increments (0.01
seconds) gives a slightly better performance.

The last six graphs exhibit the model’s time response to
sinusoidal angular velocities. These are the results of the
test used to determine the model’s ability to track time
varying functions. The first three of these graphs (pages
120-122) illustrate a target angular velocity of
.001-cos(Dt) and a satellite angular velocity of
.0009-cos(Dt>. The variable D is varied in order to test
observer response to different rates of change in angular
velocitiegs. The final graphs (pages 123-125) depict X and &
with a target angular velocity of .005+cos(Dt) and a
satellite angular velocity of .00045-:cos(Dt). The variable
D is 0.01 in this gimulation. This results in ainusoids of
smaller amplitudes and longer periods. The results of
tracking the sine wave are very satisfactory. It is noted

that the relative error for both states is very small.
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APPENDIX D

DECOUPLED MODEL SIMULATION RESULTS

These twenty graphs resulted from the decoupled model
simulations (as described in chapter 6). Figqure 6.8
presents a block diagram of the decoupled model. The first
five graphs (pages 128-132) illustrate the time response for
state X. The time increment, .t, is held constant at 0.01
seconds. Several different gains were used on each graph.
The state X was followed closely by i. Different scales and
simulation times are plotted to produce a variety of
suitable graphs. A gain of ten consistently produces very
good results in all five graphs.

The next group of five computer graphs (pages 133-137)
exhibit state 2. As above, the time increment, t, is kept
at 0.01 while the gain (k) is varied. The time response for
the lower gains in particular are very satisfactory. The
state ® is closely approximated by 2.

The third set of five graphs (pages 138-142) represent
state X. This group of computer graphs holds the gain
constant at one and allows the time increment to vary. As
expected, smaller time increments (0.1 and 0.01) result in
superior tracking capabilities.

The last set of five graphs (pages 143-147) show ¥ and

g .
s g, The gain is kept at a constant value equal to one and
.
s
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In all of the above examples,
or #) closely tracks the actual state (X or 3.

increments produce the best results.
simulation results are quite satisfactory.

the time increment is varied.
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